



earning

Lab

## POVERING

Electricity 2

**Supply & Demand** 





You're going to be a Data Analyst, using numbers to make decisions about how to generate renewable electricity for Banktown, a fictional town. This table shows how much electricity Banktown needs across one full **morning** in winter.

We call this **electricity demand**.

Using the information in the table, create a bar graph on your worksheet to show electricity demand throughout the day.

| Time   | Electricity demand (kWh) |  |
|--------|--------------------------|--|
| 1am    | 20                       |  |
| 2am    | 17                       |  |
| 3am    | 15                       |  |
| 4am    | 15                       |  |
| 5am    | 18                       |  |
| 6am    | 28                       |  |
| 7am    | 40                       |  |
| 8am    | 62                       |  |
| 9am    | 60                       |  |
| 10am   | 60                       |  |
| 11am   | 50                       |  |
| Midday | 48                       |  |



This table shows electricity demand during one full **afternoon** in winter.

Use the information in the table to full in the remaining section of your bar graph.

| Time     | Electricity demand (kWh) |  |
|----------|--------------------------|--|
| 1pm      | 50                       |  |
| 2pm      | 45                       |  |
| 3pm      | 48                       |  |
| 4pm      | 60                       |  |
| 5pm      | 75                       |  |
| 6pm      | 82                       |  |
| 7pm      | 83                       |  |
| 8pm      | 80                       |  |
| 9pm      | 80                       |  |
| 10pm     | 75                       |  |
| 11pm     | 50                       |  |
| Midnight | 30                       |  |



Electricity demand changes throughout the day.

On your worksheet, write full sentences to explain why these changes happen at certain times of day.

For example, from midnight to 6am electricity demand is low because most people are asleep and they are not using electricity.







Banktown's electricity comes from a power station that burns fossil fuels. The local council are interested in installing renewable technologies to meet electricity demand.

They have decided to investigate if a solar panel farm would be suitable.



#### This table shows how much electricity could be generated by a solar panel farm built near the town.

We call this **electricity supply**.

Using the information in the table, add points to your bar graph to show how much electricity the solar panels can generate in the morning.

For example:



| Time   | Electricity demand (kWh) |  |
|--------|--------------------------|--|
| 1am    | 0                        |  |
| 2am    | 0                        |  |
| 3am    | 0                        |  |
| 4am    | 0                        |  |
| 5am    | 0                        |  |
| 6am    | 0                        |  |
| 7am    | 0                        |  |
| 8am    | 5                        |  |
| 9am    | 8                        |  |
| 10am   | 35                       |  |
| 11am   | 65                       |  |
| Midday | 72                       |  |



Using the information in the table, add points to your bar graph to show how much electricity the solar panels can generate in the afternoon.

For example:



| Time     | Electricity demand (kWh) |  |
|----------|--------------------------|--|
| 1pm      | 75                       |  |
| 2pm      | 77                       |  |
| 3pm      | 68                       |  |
| 4pm      | 62                       |  |
| 5pm      | 7                        |  |
| 6pm      | 0                        |  |
| 7pm      | 0                        |  |
| 8pm      | 0                        |  |
| 9pm      | 0                        |  |
| 10pm     | 0                        |  |
| 11pm     | 0                        |  |
| Midnight | 0                        |  |



There are large parts of the day when solar panels would not generate enough electricity for Banktown.

On your worksheet, write some other ways that Banktown could generate electricity.





0

 $\mathbf{O}$ 

### **Supply & Demand - Extension**

The times when solar panels cannot generate enough electricity for Banktown are shown in **Table 1** on your worksheet.

Complete the table to show the difference between electricity demand and electricity supply at these times of day.

The first row has been completed for you.



| Time     | Electricity demand<br>(kWh) | Electricity supply<br>(kWh) | Electricity demand<br>– electricity supply |
|----------|-----------------------------|-----------------------------|--------------------------------------------|
| 1am      | 20                          | 0                           | 20 - 0 = 20                                |
| 2am      | 17                          | 0                           |                                            |
| 3am      | 15                          | 0                           |                                            |
| 4am      | 15                          | 0                           |                                            |
| 5am      | 18                          | 0                           |                                            |
| 6am      | 20                          | 0                           |                                            |
| 7am      | 40                          | 0                           |                                            |
| 8am      | 62                          | 5                           |                                            |
| 9am      | 60                          | 8                           |                                            |
| 10am     | 60                          | 35                          |                                            |
| 5pm      | 75                          | 7                           |                                            |
| 6pm      | 82                          | 0                           |                                            |
| 7pm      | 83                          | 0                           |                                            |
| 8pm      | 80                          | 0                           |                                            |
| 9pm      | 80                          | 0                           |                                            |
| 10pm     | 75                          | 0                           |                                            |
| 11pm     | 50                          | 0                           |                                            |
| Midnight | 30                          | 0                           |                                            |

Next, complete the final row by adding each of your answers.

This will show Banktown's total electricity demand that cannot be supplied using solar panels.

The times when solar panels **can** generate enough electricity for Banktown are shown in **Table 2** on your worksheet.

Complete the table to show the difference between electricity supply and electricity demand at these times of day.

The first row has been completed for you.

| Time   | Electricity demand<br>(kWh) | Electricity supply<br>(kWh) | Electricity supply – demand |
|--------|-----------------------------|-----------------------------|-----------------------------|
| 11am   | 50                          | 65                          | 65 - 50 = 15                |
| Midday | 48                          | 72                          |                             |
| 1pm    | 50                          | 75                          |                             |
| 2pm    | 45                          | 77                          |                             |
| 3pm    | 47                          | 68                          |                             |
| 4pm    | 60                          | 62                          |                             |

Next, complete the final row by adding each of your answers.

This shows how much electricity can be generated using solar panels, but might be wasted because it isn't needed.



Electricity that is generated using renewable technologies can be stored in large batteries. We can then use it when it is needed.

If Banktown installed some of these batteries, it would reduce the amount of additional electricity the town would need to generate.

Using your answers from Table 1 and Table 2, calculate how much electricity Banktown would still need to generate.

| Total electricity that can't be generated using solar panels | kWh |
|--------------------------------------------------------------|-----|
| Total electricity from solar panels that could be wasted     | kWh |



The Banktown council have decided to use an energy mix to generate electricity for the town.

Their energy mix is made up of solar panels and wind turbines.

Why is it important for different towns and countries to use an energy mix?

Write your answer on the worksheet.





arning

ab





# Learning Lab<sub>o</sub>

## Labo POVERING

from Glasgow Science Centre







